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A New Iterative Diakoptics-Based Multilevel
Moments Method for Planar Circuits
Steven Ooms,Student Member, IEEE, and Daniël De Zutter,Senior Member, IEEE

Abstract—This paper combines a multilevel moments method
(MMM) scheme with a modified diakoptics (MD) technique and
a block Gauss–Seidel (BGS) iterative technique to reduce the
solution time of large planar microwave structures. The proposed
MMM scheme has two levels. On the lower level, the planar
circuit is divided into several subcircuits using two types of
artificial ports. At the higher level, general basis functions defined
over the complete circuit are generated in an iterative way. The
validity and the efficiency of the new technique are validated by
several examples, including a large low-pass filter.

I. INTRODUCTION

I N ORDER TO reduce the development cost and shorten
the development cycle of electromagnetic high frequency

(HF) circuits, developers use computer-aided design (CAD)
techniques to predict the performances of the circuit even
before it is ever built. Today, circuit simulators are quite
popular and have become a standard tool for a developer.
For dense and complex structures with strong or important
parasitic couplings, the accuracy of these circuit simulators is
often limited. In those cases, electromagnetic simulators are
of growing importance.

Electromagnetic field (EM) simulations based on the method
of moments (MoM) [1] are highly accurate and applicable to
HF planar circuit design [2]–[5]. However, the MoM needs a
lot of memory and solution time for large circuits, severely
limiting its application.

Several techniques have been used to overcome these limi-
tations. For large scatterers, a spatial decomposition technique
[6], [7], multilevel methods in combination with the fast
multipole method [8], [9], and an MMM [10] have been
successfully applied. For wire antenna problems, a diakoptic
technique based on network impedances was developed in [11]
and improved with an iterative scheme in [12] and [13]. As
mentioned in [14], this diakoptic technique can be interpreted
as a MoM technique.

A combination of the MMM and the diakoptic technique
(as suggested in [14]) was also applied to planar microwave
structures in [15] and [16], without any iterative refinement.
In [17], a multigrid method similar to the MMM in [10] was
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interpreted as an iterative diakoptic method. In [18], a two-
level spectral technique was proposed in the spectral domain.

However, in this paper we will combine the MMM, a
diakoptic technique, and an iterative approach in order to solve
the MoM matrix equation resulting from an EM simulation of
planar microstrip circuits. We will do this faster and by using
less memory than the direct solution, given only the system

-matrix and a subcircuit division. We start from the MMM
technique outlined in Section II. The addition of an iterative
refinement is described in Section III. Our technique is then
validated by some examples in Section IV, followed by some
concluding remarks in Section V.

II. M ULTILEVEL MOMENTS METHOD

A. The General Principle

An MMM simulation [10], [15], [16] of an electromagnetic
circuit consists of two phases. During the first top–down phase,
the circuit is divided into several subcircuits by artificial ports
(as opposed to the original exterior ports). Each subcircuit is
again divided into sub-subcircuits, and so on until the lowest
level is reached. On the lowest level, the current density is
discretized using a set of basis functions such as pulse basis
functions or rooftop functions, just as in an ordinary MoM
simulation [1].

During the second bottom-up phase, a MoM simulation
is applied to the lowest level by exciting the (lower level)
ports—both exterior and artificial—one after the other. The
resulting current densities on each subcircuit form “generalized
half rooftop functions” and are combined into “generalized
(full) rooftop functions” at the artificial ports by demanding
current continuity at these ports. These “generalized (full)
rooftop functions” are used as the basis functions for the next
level. This process is repeated up to the upper level, each time
using the results of the previous level as basis functions for the
next one. Due to the variational character of the MoM [11],
[19], the errors made by using coarser basis functions instead
of the finer ones on the lowest level reduce quadratically on
the next level.

B. Two-Level MMM

In our approach, we apply a two-level MMM scheme with
rooftop basis functions [3] on the lowest level to planar
microwave circuits. We will illustrate our approach using a
microstrip transmission line (Fig. 1(a), with two exterior ports

and ). First, the circuit is divided into several subcircuits
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Fig. 1. Two-level moments method.

by inserting artificial ports (in Fig. 1(b), we added three arti-
ficial ports— , , and —yielding four subcircuits).
Each of these subcircuits is then simulated separately for as
many excitations as the considered subcircuit has (lower level)
ports: we apply a unit current at the excited port, while leaving
the unexcited ports open. The current density profiles resulting
from these lower level MoM’s are shown in Fig. 1(c) (eight
in total). They can be thought of as “generalized half rooftop”
functions at the lower level ports. By demanding current
continuity at the portsides of the artificial ports, these profiles
are combined into “generalized (full) rooftop” functions (in
Fig. 1(d), the eight profiles from Fig. 1(c) are combined into
five upper level basis functions ). These “generalized
rooftop” functions form the basis functions for the upper
level MoM.

During the upper level MoM, we simulate the complete
circuit under the excitation of the exterior ports using the
“generalized rooftop” functions as basis functions. In
other words, we are interested in finding the amplitudes
of these “generalized rooftop” basis functions when exciting
the exterior port . The resulting MoM equation is then

(1)

with , , and ( ), respectively, the set of
the exterior ports, the artificial ports, and the lower level ports
(in the example of Fig. 1: , ; , , ; ,
, , , ) and the excitation term due to the excitation

of exterior port . The upper level -matrix elements
describe the coupling between two basis functions and

. They can be derived directly from the lower level matrix
elements , which describe the coupling between the lowest
level rooftop functions on side and side :

(2)

The coefficients must be interpreted as follows. The
“generalized rooftop” basis functions — indicates lower
level port is excited and is also the second subindex of

—are formed by individual contributions of the lowest level
rooftop functions used for the lower level MoM. The resulting
amplitude of each such rooftop basis function at sideis
precisely . Hence, according to (2), can be interpreted
as the sum of the individual weighted quadratically by
the “generalized rooftop” basis function profilesand , all
expressed as a function of the lowest level rooftop functions.

The quantities we are finally interested in are the overall
current densities [Fig. 1(e)] due to the excitation of exterior
port , expressed as a function of the amplitudes of
the lowest level rooftop functions over side. These current
densities can be found as the linear combination of the profile
of each “generalized rooftop” basis function multiplied
by its amplitude, which was calculated during the upper level
MoM. In other words, the overall current density at side
when exciting exterior port can be found as the summation
over the product of the amplitude of the current profile of the
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Fig. 2. Two-level moments method: FAP.

“generalized rooftop” basis function at side , i.e., ,
with the amplitude of the “generalized rooftop” basis functions

when exciting exterior port , i.e., :

P (3)

These overall current densities are supposed to be a good
approximation of those yielded by one direct MoM. It should
be noted that coupling between all subcircuits is taken into
account, but only as the coupling between the “generalized
rooftop” basis functions as a whole, and not as the coupling
between the individual lowest level rooftop basis functions as
when solving the problem directly.

Also note that in (2), is only defined in the subcircuits
connected to lower level port (zero on the other subcir-
cuits) which reduces the number of operations for the double
summation.

C. FAP’s and SAP’s

During the lower level MoM simulation of one subcircuit
the presence of the other subcircuits was neglected [Fig. 1(c)].
When constructing the “generalized full rooftop” basis func-
tions by merely combining the two “generalized half rooftop”
basis functions [Fig. 1(d)], we assumed that the presence of
the metallization at the other side of the artificial port does
not alter the “generalized half rooftops.” In order to take
the coupling between the metallizations of two subcircuits

across an artificial port into account, we can construct these
“generalized full rooftop” functions directly. Starting from
the subdivided circuit [Figs. 1(b) and 2(a)], we combine the
metallizations of two continuous subcircuits across an artificial
port [Fig. 2(b)] and use this combination in the lower level
MoM by exciting their common (lower level) port. The
resulting “generalized full rooftop” profiles [Fig. 2(c)] will be
more accurate than those from Fig. 1(d) because the (field)
coupling across the artificial port is taken into account. These
“generalized rooftop” basis functions are again used as the
basis functions for the upper level MoM, just like in the
previous subsection.

In [12], this pairing technique was applied to the simulation
of (wire) antennas, facilitating the implementation of the
excitation.

Artificial ports excited like this will be called fixed artificial
ports (FAP’s) in contrast with the split artificial ports (SAP’s)
where two simulations and two “generalized half rooftops”
are used before uniting them into a single “generalized full
rooftop.”

III. I TERATIVE REFINEMENT

A. Introduction

During the simulation of the lower level in the MMM, the
presence of metallizations other than the subcircuit considered
is neglected. This can be a cause of inaccuracy and errors in



OOMS AND DE ZUTTER: ITERATIVE DIAKOPTICS-BASED MULTILEVEL MOMENTS METHOD FOR PLANAR CIRCUITS 283

the final result. In the case of FAP’s the error will be smaller,
but the metallization of the subcircuits not connected to the
considered artificial port will be neglected and this omission
will introduce errors. In order to reduce the errors, an iterative
technique converging to the exact solution can be put forward.

As a first possibility, the final current profiles from (3)
can be iteratively corrected in order to take each coupling into
account. The profiles found by the upper level MoM [Fig. 1(e)]
can be used as the starting point for a linear block iterative
method such as block Gauss–Seidel (BGS), back–forth BGSf,
and block Jacobi [20]–[22]. These methods turned out to be
insufficiently stable to converge even for simple transmission
lines. Therefore, this approach was aborted.

B. Basis Function Iterations

As we have a two-level MMM, the iterative correction can
be applied to both levels. However, there are several reasons
for applying an iterative technique to the lower level basis
functions.

1) The upper level currents are not accurate (enough) due
to the omission of the other metallizations. Iteratively
including these neglected metallizations could overcome
the problem.

2) As the upper level MoM simulation will be applied to
the results of the iteration, the reduction of the error on
the basis functions due to the iteration will still be further
reduced by the variational nature of the MoM [11], [19].
Thus, the iterative correction of the lower level results
will be more effective and lead to better convergence.

3) The overall current profiles are a linear combination of
basis functions. Thus, the dimensionality of the lower
level is higher than that of the upper level and has more
degrees of freedom than the upper level. Hence, this
iteration is likely to be more stable.

4) Perhaps the most important reason is based on diakoptics
[11], [12], [14], making it possible to prove that if
the basis functions converge to the so-called diakoptic
basis functions, the overall solution based on these basis
functions will match the full solution—i.e., the solution
from one direct MoM—exactly (apart from numerical
inaccuracies). Indeed, in general, diakoptics state the
following [14]: given a set of basis functions, some
of these are selected as special ones and a new set of
basis functions is constructed by exciting each of the
selected functions separately; in that case, the range of
solutions of the old set of basis functions and the range
of solutions of the new set are the same. The new basis
functions are called the diakoptic basis functions.

We apply diakoptics to our two-level MMM in the following
way. Our original set of basis functions is formed by the
lowest level rooftop functions over the sides. We select
the rooftops over the portsides of the lower level ports (both
exterior ports and artificial ports) as special functions, and we
iteratively construct the profiles resulting from exciting
each of these lower level ports separately. If we use these
(diakoptic) profiles as basis functions for the upper level MoM,

the resulting overall current profiles will exactly match the
profiles found by one direct MoM [14].

In the proposed iterative approach, the subsectional (i.e.,
only defined on the subcircuits connected to the considered
lower level port) upper level “general (full) rooftop” basis
functions are extended into full-domain (i.e., defined over the
complete circuit) diakoptic basis functions. We developed two
iterative techniques which turned out to be very suitable to
construct these diakoptic basis functions. They are described
in the following subsections.

C. Modified Diakoptics (MD)

The first method is based on the MD [12] and has a
physical interpretation. We will illustrate this interpretation
using the “generalized rooftop” basis function from the
transmission-line example of the previous section (Figs. 1 and
2). During the lower level MoM simulation, no metallization
other than that of the subcircuits connected to the considered
artificial port (subcircuits (3) and (4) in the example) is taken
into account, thus there is no current on the other metallizations
[Fig. 3(a)]. The currents on each of these subcircuits will
excite currents on all the other subcircuits by (first-order) field
coupling (Fig. 3(b) shows how subcircuit (3) acts as a sending
antenna and subcircuits (1) and (2) as receiving antennas).
During the first iteration, these first-order coupling currents are
calculated. These currents will, in turn, excite (second-order)
coupling currents on all the other subcircuits (Fig. 3(c) shows
how, with subcircuit (2) as sending antenna, subcircuits (1),
(3), and (4) act as receiving antennas). These are calculated in
the second iteration. These currents will again excite currents
on all the other subcircuits, and so forth. The actual current
is the sum of the lower level MoM current—say, the zeroth-
order coupling current, Fig. 3(a)—and the currents from the
different iterations—the th order coupling currents—and can
be seen in Fig. 3(d). Remark that there is no current on the
portsides of all lower level ports , except at the excited
one ( in Fig. 3).

The actual current profile [Fig. 3(d)] should be a good
approximation of the diakoptic basis function belonging to the
considered port. Note that the basis functions have become
full-domain basis functions [Fig. 3(d)], whereas the origi-
nal “generalized rooftop” basis functions were subsectional
[Figs. 1(d), 2(c), or 3(a)].

The calculation of the first-order coupling currents differs
somewhat between FAP’s and SAP’s. For FAP’s, the coupling
between the subcircuits across the considered artificial port
[subcircuits (3) and (4) in Fig. 3(a)] is already taken into
account during the lower level MoM simulation [Fig. 2(b)
and (c)] and, therefore, there will be no first-order coupling
current on these subcircuits. For SAP’s, this coupling is not
yet taken into account during the lower level MoM simulation
[Figs. 1(b) and 2(c)] and a first-order coupling current will be
excited on these subcircuits [if lower level port (artificial
port ) were a SAP, there should be an extra current on
subcircuit in Fig. 3(b)].

For the first-order coupling of each basis function, only the
two subcircuits across the excited artificial port have to be con-
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Fig. 3. Modified diakoptics.

sidered as sending antennas (only they carry current), whereas
from the second-order coupling onwards, all subcircuits have
to be considered as sending antennas.

In order to simplify the notation, we will combine the
sides in the complete circuit into blocks of sides: all the
sides belonging to the same subcircuit (excluding the portsides
of the connected lower level ports) are combined into one
block for each subcircuit; all the portsides belonging to the
same lower level port are also combined into one block for
each lower level port. Assuming subcircuits and
lower level ports , there are subcircuit blocks and
lower level port blocks and basis function (in Fig. 3,

and ). These blocks of circuit sides and
portsides are then ordered in ascending order of subcircuit
number ( ), respectively, lower level port numbers
( ), the subcircuit blocks preceding the port blocks.

The matrix describing the current density at side
of basis function is divided into block vectors and

containing the current densities of the basis function
for the sides belonging to the subcircuit , respectively, the
sides belonging to the lower level port . The matrix
describing the coupling between the (lowest level) rooftops
over side and side is likewise divided into block matrices

, coupling between the sides of subcircuit and those of
subcircuit , , coupling between the sides of subcircuit

and those of lower level port , and , coupling
between the sides of lower level port and those of lower
level port .

When applying a diakoptic current excitation for basis
function , only the lower level port is excited; hence,

for (4)

Taking this into account, the (block) matrix equation for the
diakoptic basis functions becomes

(5)

During the th iteration, we use the standard iterative
construction

(6)

with the th-order coupling current excited by the
current , initializing with the
“generalized rooftop” currents from the lower level MoM.
Substituting (6) into the block matrix equation (5) and omitting
the coupling between the highest order coupling currents, the
block iteration formulas for basis function are

if

if
(7)
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(8)

with the subcircuits connected to lower level port
(in Fig. 3 are subcircuits (3) and (4) for ).

Note that during each iteration, only the off-diagonal-
matrix blocks ( and ) and the inverse of the diagonal

-matrix blocks [ ) are needed (as was the purpose
of our technique] together with the results of the previous
iteration ( ). After each iteration the (previous)
overall currents are updated with the new additional
currents using (6) and the stop criterion (see below)
is checked. If it is satisfied, indicating the approximation is
“good enough,” the iterative process is stopped or else a new
iteration is started.

D. BGS

In the MD technique, the results of each step in the iteration
(7), (8) are updated into the overall currents, but after the
complete iteration (6), just as in the standard block Jacobi
linear iterative technique [21], [22]. Jacobi’s technique can be
accelerated by updating the results of each step immediately
[21], [22], resulting in Gauss–Seidel’s method [20], or BGS
for block matrices.

Introducing the recursion formula (6) into the diakoptic
matrix equation (5) and using the most up-to-date currents
available, the th-order coupling currents can be found as

(9)

This equation can be further reduced by calculating the
updated current directly. When substituting (9) into
the recursion formula (6), the BGS iteration formula becomes

(10)

The iteration formulas for MD and BGS—respectively, (8)
and (10)—are completely analogous, apart from the influence
of the excited lower level port for BGS [the first term be-
tween the brackets in (10)]. This seems to make BGS less
computationally efficient as MD. However, the multiplication

is iteration independent and can, therefore, be done
beforehand and stored in a matrix. From a computational
viewpoint, this reduces this multiplication to an assignment.
This assignment/multiplication is equivalent with the sum in
the iterative construction (6) during the updating phase for the
MD method and can also be seen in the first MD iteration (7).
Thus, the number of operations per iteration are the same for
BGS and MD.

Fig. 4. Layout of a double-stub filter with five subcircuits.

Fig. 5. Convergence of the double-stub filter with five subcircuits.

E. Stop Criterion

The iterative process is stopped when the number of itera-
tions exceeds a given maximum (e.g., 20)—to interrupt a di-
verging process—or if the iterative correction becomes smaller
than a tolerance (e.g., 0.1%)—the solution has converged.
For the calculation of that correction, a continuous weighted
relative-absolute norm formula was taken, comparing the
additional basis function current for each side and excitation
with the current from the previous iteration

(11)

This correction factor is assumed to be a measure for the
accuracy of the iterative solution.

F. Acceleration of the Upper Level

When using diakoptics-based iterative refinement, the basis
functions span the complete circuit, as can be seen in Fig. 3(d).
Therefore, operations are needed to calculate (2),
being the total number of unknown currents. The following
acceleration reduces the number of operations to . The
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(a)

(b)

(c)

(d)

Fig. 6. Layout and several division schemes for a bandpass filter.

diakoptic basis functions are only excited by a (current) source
at the corresponding lower level port. Therefore, there is
only a localized incident electrical field at the lower level
ports; the overall tangential electrical field vanishes at all
other metallization (5). Hence, the basis function current
distributions satisfy the matrix equation

(12)
with and the scattered and the incident tangential
electrical field, respectively. Thus, (2) reduces to

(13)

needing only operations.

IV. NUMERICAL EXAMPLES

A. Double-Stub Filter

This first simple example is intended to show that our
iterative technique converges to the correct solution. A double-
stub filter on 25-mil alumina ( ), the layout of which is
given in Fig. 4 (dimensions in millimeters), was divided into
five substructures (four quarter-wavelength sections—29 mm

0.635 mm—and the central section—3 0.635 mm
0.635 mm)—and simulated at 1 GHz. Reference data were
obtained by simulating the filter as a whole. The convergence
of the -parameters ( , , and ) and the basis functions
can be seen in Fig. 5. Only six decimals of the-parameters
were taken into account, therefore, the maximum accuracy is

140 dB. The convergence of the-parameters is more than
exponential. The total number of unknowns was 24 for this
example and only MD was used.

B. Bandpass Filter

The following example is a microstrip bandpass filter
on 25-mil alumina ( ) consisting of three pairs of
quarter-wavelength lines (QWL) with dimensions 29 mm

0.635 mm, laterally separated by a 0.365-mm gap [see
Fig. 6(a)]. The filter was simulated using MD and five different
division schemes: as a whole [Fig. 6(a)] for reference data;
divided in three [Fig. 6(b)], in four [Fig. 6(c)], and in six
[Fig. 6(d)] using SAP’s; and divided in six [Fig. 6(d)] using
FAP’s. The frequency was swept from 0.9 GHz up to 1.1 GHz
using 21 equidistant samples. The curves for 4SAP and 6SAP
are visually so close to each other that for visibility only the
curves for 6SAP are plotted.

Fig. 7(a) shows the reflection ( ) curves for the direct
solutions (no iteration done), Fig. 7(b) those after one iteration.
The direct solution of 6FAP is the best as it simulates the
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(a)

(b)

Fig. 7. Reflection coefficient (S11) of the bandpass filter after direct solution
and after one iteration.

three pairs of QWL’s as one part; 3SAP is less accurate as
it simulates only the central pair as one; 6SAP (and 4SAP)
mispredict the resonant frequency. After one iteration, 6FAP
is very close to the correct result, followed by 6SAP (and
4SAP), which now have found the correct resonant frequency,
but still overestimate the reflection; 3SAP, on the contrary, is
the least accurate as it underestimates the reflection due to the
small number of subcircuits.

After two or more iterations, the curves are visually the
same. The largest difference with the reference curve is then
smaller than 60 dB. The number of iterations needed for
a correction smaller than 0.1% was independent from the
frequency and ranged from six iterations for three divisions to
eight iterations for six divisions. This shows that our technique
is stable both for different division schemes and for different
frequencies.

C. Low-Pass Filter

1) Description and Layout:As a third more elaborate ex-
ample, we apply our technique to the simulation of a low-pass

(a)

(b)

Fig. 8. Low-pass filter with (a) nine and (b) 19 divisions.

filter, the layout of which is given in Fig. 8. It consists of
an input section—1 in Fig. 8(b)—with a folded matching
stub—14–16 in Fig. 8(b), a step in width—2 in Fig. 8(b), a
central section with three spiral inductors and two patch capac-
itors—3–4, 7–8, and 10–11, respectively, 5 and 9 in Fig. 8(b),
a step in width—12 in Fig. 8(b)—and finally an output sec-
tion—13 in Fig. 8(b)—with a folded matching stub—17–19
in Fig. 8(b). The overall circuit is quasi-symmetric (except for
the inductors) and measures approximately 14 mm12 mm.

This circuit was gridded using rectangles and triangles, once
with one transversal cell (except for the capacitor patches)
and once using an edge mesh [23] (three transversal cells),
yielding, respectively, 349 and 825 unknown variables. This
circuit was divided into nine [Fig. 8(a)], 12, and 19 [Fig. 8(b)]
parts. All circuits were simulated using SAP’s and the nine
divisions circuit also using FAP’s. All those simulations were
performed for both MD and BGS iterations for both normal
and accelerated upper level, and for both the normal case and
the edge mesh case. The normal case was simulated in the
frequency interval 1–4 GHz using 16 equidistant frequency
points; the edge mesh case was only simulated at 1 GHz.

The simulations were named according to the scheme
“ ” in which “ ” indicates the number of
divisions, “ ,” and “ ,” respectively, FAP and SAP, “”
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Fig. 9. Convergence of the basis functions of the low-pass filter.

BGS (MD in the absence of “”) and “ ” accelerated upper
level (normal upper level in the absence of “”). The iterative
process was stopped for corrections lower than 0.1% or after
20 iterations. Thus, we strive to obtain an accuracy of (more
than) 80 dB on the -parameters (see below).

The reference situation was obtained by simulating the
complete circuit as a whole (“full”) for the normal case as
well as for the edge mesh case.

2) Convergence and Accuracy:Fig. 9 shows how the rela-
tive basis change or correction (11) diminishes with increasing
number of iterations for the four division strategies with upper
level iteration and the smaller case ( ). The curves,
at 1 and 4 GHz, for BGS decrease monotonous and faster
than the not so uniformly descending curves for MD. This
proves that the BGS technique indeed converges faster than
the MD technique as was expected (see Section III). The same
conclusions hold for the edge mesh case ( ). Note
that the accelerated upper level has no influence on the basis
function iterations and, therefore, gives the same curves.

Fig. 10 shows the accuracy of the-parameters during the
iterative process. The curves (at 1–4 GHz) are grouped per
iteration strategy (BGS or MD) and per upper level simulation
technique (accelerated or not) and are merely meant for
qualitative purposes. For each simulation, the arrows indicate
the total range in numbers of iterations covered by the four
frequencies, and this at the accuracy of80 dB. The accuracy
was calculated as the maximum absolute difference between
the “full” simulation and the considered simulation for both
real and imaginary part of all -parameters. For the four
division strategies, BGS converges the fastest, followed by
MD and BGS combined with accelerated upper level. MD
combined with accelerated upper level does not reach an

accuracy of 80 dB when the correction is lower than 0.1%.
It is clear that the accelerated upper level performs worse than
the normal upper level. The same conclusions also hold for
the larger case (edge mesh with ).

3) -Parameters: The convergence of the -parameter
over the complete frequency range for BGS ( ) is
illustrated in Fig. 11. After the direct solution, the curves
for 9SAP, 12SAP, and 19SAP almost coincide, whereas the
curve for 9FAP already shows a low-pass characteristic. The
9FAP simulation converges the fastest, followed by 9SAP
and, finally, 12SAP and 19SAP. As FAP’s already include
the coupling across the artificial ports, their convergence is
faster than for SAP’s. The circuits with 12 and 19 divisions
suffer somewhat from oversegmentation, thus reducing the
convergence rate. After three iterations the difference between
the curves is no longer visible.

4) Timing Results:Next we will compare the calculation
times for the different simulations. All calculations were
performed on an HP9000 workstation, with the program code
written in C without any optimization. The total time in
the tables is the time in seconds needed to obtain the overall
current distributions for voltage excitations at the exterior
ports, given the overall -matrix and the subcircuit
division. The time needed for the calculation of the ’s is
not taken into account. The upper part of Table I describes
the timings for MD, the lower part those for BGS, Table II
only those for BGS. The first three rows give the results
for iteration until the correction is smaller than 0.001 (or
0.1%), i.e., the time for the complete iterative process, the
number of iterations, and the obtained accuracy of the-
parameters. The next row shows the (mean) time needed for
one single basis-function iteration. As our goal was to obtain



OOMS AND DE ZUTTER: ITERATIVE DIAKOPTICS-BASED MULTILEVEL MOMENTS METHOD FOR PLANAR CIRCUITS 289

Fig. 10. Convergence of theS-parameters of the low-pass filter.

Fig. 11. Convergence of the reflectionS-parameter (S11) of the low-pass filter.
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TABLE I
TIMING TABLE FOR THE LOW-PASS FILTER (n = 349) AT 1 GHz

TABLE II
TIMING TABLE FOR THE LOW-PASS FILTER

WITH EDGE MESH (n = 825) AT 1 GHz

an accuracy of 80 dB or better, we are interested in the
smallest possible number of iterations to obtain that accuracy.
This analysis was done after the complete iterative process.
The last three rows of each part of the tables contain the results
for an accuracy of 80 dB or better, i.e., the reduced number
of iterations that suffice to obtain the80-dB accuracy, the
change of the correction in percentage in the basis functions
during the second before last and the last of this reduced
number of iterations and the reduced time accounting for
the reduced number of iterations. The notation “253” in
the “Correction” row of the MD simulation 09S, e.g., means
that the fourth iteration (the second before last) had a basis
correction of 25%, whereas the fifth (the last of the reduced
iterations) had a correction of 3%. The last row is the most
important one as it states whether the technique was more (or
less) successful than a direct MoM simulation of the whole
circuit (timing in the first column).

Note that the maximum possible accuracy is140 dB as
the -parameter values are only compared up to 10(6
decimals).

Table I shows that both MD and BGS have reached max-
imum accuracy after convergence, which cannot be said of
the accelerated upper level technique. BGS converged in less
iterations than MD. The number of iterations needed for an
accuracy of 80 dB is again less for BGS than for MD,
resulting in faster reduced times, for nine divisions, even
faster than a full simulation (accelerated or not). MD without
acceleration is also faster than a full simulation.

The results from Table I and the nonuniformly descending
curves for MD in Fig. 9 show that for MD it is difficult

to relate the basis function correction to the-parameter
accuracy. On the other hand, for BGS (not accelerated) a
correction of approximately 3 dB in the basis functions
results in an accuracy of 80 dB in the -parameters; this
relationship could be used as a better stop criterion. The times
per iteration for MD and BGS (in combination with accelerated
upper level or not) are the same for each simulation with the
same number of divisions, as was expected from the theory.

The same conclusions hold for the other frequency points
we used. The convergence for higher frequencies is even better
due to the fact that the direct solution (before the iterative
process starts) in the stopband (2–4 GHz) is already very close
to the actual result (see Fig. 11), thus needing less iterations
to yield the needed accuracy.

Summarizing for the smaller case, we can say that the use
of BGS can reduce the solution time down to some 65% and
MD down to some 78%. The accelerated upper level performs
worse than the normal upper level. This is probably due to the
fact that the condition (12) is not yet sufficiently fulfilled in
order to allow for the acceleration (13).

Table II summarizes the most important timing results for
the simulations using the edge mesh and BGS. The same
conclusions can be drawn from Table II as from Table I.
However, this time all simulation times are below the full
simulation time and the difference between BGS andfull and
between BGS and MD (not shown here) has become larger.
The time reduction now reaches up to a factor 3.8 for BGS
in the best case and a factor of more than 2 for the other
cases. A correction of 3 dB in the basis functions again
corresponds to an accuracy of80 dB in the -parameters.
The accelerated upper level (not shown here) again does
not effectively accelerate the solution process due to reduced
accuracy of (13). The acceleration technique should, therefore,
not be considered any further.

V. CONCLUSIONS

In this paper, we introduced a combination of the MMM and
diakoptics with an MD and a BGS iterative refinement. This
reduces the solution time for the MoM matrix equation from an
electromagnetic simulation, even for relatively small numbers
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of variables. Different segmentations were taken and all proved
successful, even oversegmentation. An accelerated upper level
simulation was considered for both iterative techniques, but
turned out ineffective or detrimental for further reducing the
solution time. Several numerical examples were given and a
new stop criterion—a correction of3 dB in the basis function
current densities—was suggested for an accuracy of80 dB
in the -parameters. Further research is necessary to improve
the accuracy if the (artificial) ports contain multiple sides and
to assess the proposed stop criterion on other examples. Work
is currently being done in these domains.
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